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1 Introduction

Morality guides us in discerning right from wrong. Language is how we express
moral rhetoric, and supervised classification models have shown the ability to
recognize moral language in text [1, 2, 18]. However, moral expressions are in-
fluenced by context [3, 9], which is composed of factors such as actors, actions,
and values [22]. For a text classifier, the domain in which the data is collected
constitutes the context, with recent works [11, 14] analyzing the out-of-domain
performance of morality classifiers. Yet, the supervised learning paradigm can
lead to black-box models [5], and what causes classifiers to perform differently
across domains has not been systematically explored. Such insight is essential to
understand whether language models can learn a domain-specific representation
of morality, which is especially crucial in delicate applications like healthcare [4].

Contribution In this extended abstract, we summarize our work published at
ACL [13]. Our contribution is two-fold. (1) We propose Tomea, an explainable
AI (XAI) method to compare a text classifier’s representation of morality across
domains. Tomea generates domain-specific moral lexicons that enable both a
quantitative and qualitative comparison of the linguistic cues that a text classifier
considers for detecting moral language across domains. (2) We employ Tomea to
compare moral rhetoric across seven social domains. We evaluate Tomea through
a crowdsourced study involving 159 annotators and by correlating its results to
the out-of-domain performance of the employed text classifier.

2 Method

Tomea compares a classifier’s representation of morality across domains. Tomea
takes as input two ⟨dataset, classifier⟩ pairs, where, in each pair, the classifier is
trained on the corresponding dataset (with the datasets assumed to be collected
in different domains). Tomea produces a qualitative and quantitative represen-
tation of the differences in moral expressions between the two domains.
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First, we use an XAI method, SHAP [19], to generate moral lexicons, sets of
words that describe the classifiers’ interpretable representations of the different
moral elements in the analyzed domain. For each word in the dataset and for each
predicted moral element, SHAP attributes an importance that is proportional
to how relevant the model considers the word for predicting that moral element.
We compile a moral lexicon for each moral element in a domain, and refer to the
union of all the moral lexicons generated in a domain as domain lexicon.

Second, we compare the moral and domain lexicons generated for the two
domains. We compare the moral lexicons by computing an m-distance for each
moral element as the normalized Euclidean distance between the importances
determined in the two domains for the words in common between the two moral
lexicons. Then, we compare two domain lexicons by computing one d-distance as
the Euclidean norm of all the m-distances computed between the two domains.

3 Results and Discussion

We test Tomea on the Moral Foundation Twitter Corpus [10], composed of over
35k tweets collected in seven domains, ranging from MeToo to Hurricane Sandy.
Each tweet is annotated with the moral elements of the Moral Foundations The-
ory [8], which postulates that morality can be deconstructed into 10 irreducible
moral elements. We train a multi-label BERT [6] model on each of the seven do-
mains, and employ Tomea to perform pairwise comparisons across the domains.

First, we perform a crowd study where we measure a moderate positive corre-
lation between Tomea’s m-distances and human judgment, showing that Tomea
can quantify the differences in how the moral elements are represented across do-
mains. Then, we measure a strong negative correlation between d-distances and
out-of-domain performance of the model, showing that, the lower the d-distance
between two domains, the higher the chance that a model trained on one domain
has a good classification performance on the other domain, and vice versa.

In addition to the quantitative analyses, Tomea enables detailed qualitative
comparisons of moral expressions across domains. For instance, Tomea deems All
Lives Matter (ALM) and Black Lives Matter (BLM) (two of the seven analyzed
domains) generally similar. However, the m-distance for the subversion moral
element is relatively higher than others. Exploring further, we discover that, for
subversion, words such as ‘overthrow’ and ‘mayhem’ have a high impact in ALM,
as opposed to words such as ‘encourage’ and ‘defiance’ in BLM, in line with the
common intuition that subversion is viewed differently in ALM and BLM.

We must understand how language models represent human morality across
domains before deploying advanced AI systems in our society. Tomea can be a
valuable tool for this purpose. It can be used to investigate how a model inter-
prets moral expressions across situational and temporal dimensions, and across
different types of moral values [16, 17]. Tomea can support societal applications
such as modeling stakeholders’ preferences on societal issues [12, 15, 23, 24], ana-
lyzing the impact of the use of renewable technologies [25], identifying arguments
in personal experiences reports [7, 20], and predicting violent protests [21].
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